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Galilean invariance and vertex renormalization in turbulence theory
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The Navier-Stokes equation is invariant under Galilean transformation of the instantaneous velocity field.
However, the total velocity transformation is effected by transformation of the mean velocity alone. For a
constant mean velocity, the equation of motion for the fluctuating velocity is automatically Galilean invariant
in the comoving frame, and vertex renormalization is not constrained by this symmetry.
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~ Galilean invariance is often invoked for macroscopic non- — AVV) @
linear field problems in order to restrict the nature of possible PV
1%

solutions[1-12]. Such approaches have been influenced by
the use of Lorentz invariance in quantum field theory. In-This result is used to establish the Galilean transformation of
deed, Galilean invariance has been used as the justificatidhe fluid pressure.

of Ward identities, which in turn lead to the conclusion that We wish to show that the NSE takes the same form in
in the perturbative renormalization groGRG) the vertex is  another inertial framé, provided all variables are replaced
not renormalized1,9]. If correct, this conclusion is impor- by variables with tildes, which are the corresponding quan-

tant, as it is Wel_l known that t_he_ element_ary perturbationtities measured irS. This property is known as Galilean in-
theory of the Navier-Stoke@nd similar equationgenerates ariance. We begin by defining the Galilean transformation

vertex corrections. and establishing the basic transformation laws.

However, the application of field-theoretic approaches to q d It h loci
classical problems requires a certain amount of caution. It is Consider a second inertia rar@ewith constant velocity

not correct to regard the Galilean transformation as merel{i aNd situated ax=cit in Sat timet. Without loss of gen-
the low-speed form of the Lorentz transformation. In theerality, we take the axes &fto be oriented along the axes of
former case, the need additionally to transform the boundaryp, and to have been coincident &t0. We also make the
conditions may render the symmetry essentially trivial forusual assumption in Galilean relativity that time is universal
the dynamics of the systeffl3], while in some classical and hence=t. Then the position coordinates of an event,
systems the symmetry may be hidda#d], meaning that itis which are given by andX in the two coordinate frames, are
satisfied automatically by the formalism and hence can imselated by simple vector addition, as are the velocities, thus:
pose no constraint on the form of solutions. In this Brief ~

Report we shall argue that this is the case for stochastic x=ct+X, Vi=¢+V;. 3
classical nonlinear systems where one considers fluctuations
about amean which itself satisfies the requirement of Gal-
ilean invariance

. As our main point is _quite sut_)tle, and our conclusion (;f/i NV (;vi a(,i

likely to prove controversial, we will present our arguments _ = g s =— - CJ'E' (4)
in a detailed, almost pedagogic fashion. Consider the Navier- ] i M i

Stokes equatioliNSE) in an inertial frameS: and these results apply to all functions»ofindt.
We can now transform the NSE, as given by Ef. in

N cy N Ni__dl VoV, () frames into frameS. From Egs.(2)<(4) it follows that IT

a - ax IXi =T1. With the substitution of this result along with EdS)
and (4), the NSE inS becomes

It is easily shown that the relevant differential coefficients
transform as

where g is the kinematic viscosity of the fluid/(x,t) and

I1(x,t) are the instantaneous values of the velocity and pres- Vi —c. Al e, Wi +V. ﬁ — @ + .92 V

sure, and the continuity equation takes the faiviy 9x,=0, g lax ok, ox . ax

for an incompressible fluid. For convenience we work in a — (5
system of units where the fluid density is unity. Canceling the two terms joined by the underbrace, we have

AISQ’ as Is We”. "”OV.V”’ t.akmg the Qn{ergence of each Eq. (5) as the NSE irS. This establishes the Galilean invari-
term in (1), and 'DVOk'ng incompressibility, leads to a ance of the Navier-Stokes equation, as required. It should be
Poisson-type equation for the pressure, thus: noted that the invariance of the continuity relation follows

quite trivially, from Eqgs.(3) and(4).
In order to study fluctuating flows, we make the usual
*Electronic address: w.d.mccomb@ed.ac.uk Reynolds decomposition which divides the instantaneous ve-
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locity into a mean velocity and a fluctuation about that meanthe fluctuating velocity in the comoving frame, viz.,
We setV;=U;+u;, whereU;=(V,) is the mean velocity and
is the fluctuation about the mean. By definitiofu;)=0,
where the angle brackets -) denote an ensemble average.
Similarly, we may introduce an analogous decomposition for
the pressurdI=P+p, whereP is the mean pressure and the is automatically Galilean invariant, for the special case
fluctuating pressure satisfies(p)=0. where the mean velocity is a constant. That is, no actual test
We note that these are instantaneous velocities at a spef Eq. (12) has to be made in order to establish its Galilean
cific point P in space-time. Hence, in terms of the two sets ofinvariance. Nor is such a test possible without “accelerating”

N N a(u;u;) __9p

o :

+ VOVZUi , (12)

coordinates of that point, we have

Vix,t) = + Vi(%,D). (6)

(Recall that time is universal and so strictiyt. But we shalll
leave it a for consistency at this stagedpplying the Rey-
nolds decomposition to this form gives

Ui(x,1) + ui(x,t) = ¢ + U; (XD + (X D), (7)

and taking averages, usifig)=(U;)=0 and{c)=c, yields the
transformation of the mean velocity as

Uixt) = ¢ + Uix1). (8)
Then, subtracting this result from E(}), we obtain
u(x,t) =T(X.0), 9

which is the Galilean transformation of the fluctuating veloc-

ity.

the field out of its comoving frame. This equation is the
normal starting point for theoretical approaches and its Gal-
ilean invariance is erroneously taken as being identical to
that of Eq.(1). Although the two equations are of identical
form it must be borne in mind that Eql) involves the
instantaneous velocity whereas Etj2) involves the fluctua-
tion from the mean.

In order to see the significance of this result for the RG,
we introduce the Fourier transformatidtk,t), for some ar-
bitrary function f(x,t). In order to establish the Galilean
transformations for the Fourier transform, it is convenient to

write the defining equation i6. Thus,

1
(2m)®

From this, and from Eq(4) for the transformation of the
differential coefficients, we have the transformation of wave

Tk = f e KT (% T) oK. (13)

We should note that the equations of motion for the meamymber ask =k, so we will just usek for wave number in

velocity (the Reynolds equatigrand the fluctuating velocity
can be obtained by substituting the left hand side of (Zj.

into Eq. (1) in place ofV;, and following the procedures
leading to Egs(8) and(9), as just outlined. In this way it can

be shown that the Reynolds equation is Galilean invariant

and that theGalilean invariance of the equation for the fluc-

tuating velocity may be established by transforming the

mean velocity only

both frames.
Now we putk =k, T=t, andd®x=dx (the latter two, trivi-
ally) and substitute from Ed3) for X into Eq.(13), to obtain

1
(2m)®

T(k,t) = gkt f &KX (%, t)d3x. (14)

If U; is constant in space and time, the turbulence is spalhis is the required result. In order to find the transformation
tially homogeneous. To emphasize that the mean velocity igules for anyf(k,t), we simply substitute on the right-hand

now constantin both space and timgwe rename it asJ;

side for its real-space form i8S

=K. Then it is easily shown that every term of the Reynolds Taking the velocity as an example, and substituting for
equation vanishes and that the equation for the fluctuating.x ) from Eq. (6), we have

velocity takes the form

%*—KJ%-’-M:_@

+ VOVZUi . (10)

We note that this equation is Galilean invariant under

Ki=c+K M _ My c Ky u =T (11
i i i g &T j(&j! i i
as the two terms
(9L|i &Ui (jlji &Tji ~ &Ui ﬂtli
_+KJ_D - ]_ K]_+C]_
ot X K X X

transform invariantly due to the usual cancellation.
We further note that this also holds f&=0, in which

vl(k,t) = eik'Ct(Z )3 f e"ik'X{Vi(X,t) - Ci}d3X

= kv (k, 1) - ¢ oK)}, (15)

and rearranging gives the reverse transformation as

Vi(k,t) = e (K, 1) + ¢ o(K). (16)
Similarly, the direct and reverse transformations for the Fou-
rier transform of the pressure take the form

(k1) = ek TI(K, 1).

TI(k,1) = €Ik, 1), (17)

case the fluctuating velocities are measured in the comoving Now, Fourier transforming Eq(1), the NSE takes the
frame of the constant mean velocity. Thus, the equation foform in k space
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w”kjjd% Vitk =1,0Vi(1,0)

= —ikIL(k,t) — vk2Vi(K.1). (18)

Substituting from Eqs(16) and(17), we may write the left-
hand side(LHS) of Eq. (18) as

V(K,1)

[LHS of Eq.(18)] =— ik - ¢V (k,r)e ® < + ¢ ke P

+ik; f dle ™V (k- L) V(1)

+ik; f &1 Vi(k =1,0)e &, 8(1)

A

+ lk] f d3l %(l,t)e_il.mci&k - l)

B
+ik; f dleic; ok -1)&1).
c (19

Let us look at the terms labele B, andC in turn. Clearly

B and C vanish because of, respectively, incompressibility

and thed function at the origin. Term\ cancels the first term
on the right-hand side of E¢19), while the right-hand side
of Eq. (18) may be transformed using Eq4d.6) and(17) so
the Galilean transform of Eq18) takes the same form in
variables with tildes.
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M + |kJKJU|(k,t) + ij J d3| Ui(k - |,t)UJ(|,t)

= —ik;p(k, t) — vok2ui(K,b). (24)

Galilean transformation of the right-hand side of E34)
using Eqgs.(17) and (22) is trivial so we concentrate on the
left-hand side, where we also invoke E@3), thus:

(LHS) = g[e-i“"ai(k,t)] +iki[K; + ¢ e T (k, )

+iijd3I e ke (k - 1,0)eTy (1, b).

Differentiating the first square bracket generates
-ik -cU(k,t)e7®° which cancels with the term
ikic/Ti(k ,t)e”* in the second square bracket. The exponen-
tials in the last term reduce to the common faceot
which cancels the exponential factor on the right-hand side
of Eq. (24). Hence the demonstration of Galilean invariance
of the equation for the fluctuating velocity(k ,t) relies, just

as inx space, on the presence of the constant mean velocity
K; which is also transformed.

Now let us consider the effect on the RG of working in
the laboratory frame rather than the usual comoving frame.
For the RG, we are interested in the effect of filtering the
equation of motion. Let us consider the Fourier modlgs t)
to be defined on the intervalOk<k,. Then we define the
filter as follows:

u (k) =ulk,t), O0sks<ky;

Now we extend the Reynolds decomposition to wave u'(k,t) =u(k,t), k;<ks<k,. (25)

number space by writing
Vi(k,t) = Ui(k, 1) + u(k,t), (20

whereU;(k,t)=(V;(k,t)) and{u;(k,t))=0.
It follows at once from the Galilean transformations o

Herek; is the lower limit of the first wave number band for
the RG.

Returning to thek-space equation of motion in the labo-
ratory frame, as given by E¢R4), we low-pass filter this and

£ Substitute the decompositiof25) into the nonlinear term

Egs.(8) and(10), and from Eq(16), that the transformations (with an analogous decomposition for the presstoebtain

for the mean and fluctuating velocities knspace are our (k,b) _ _ s
" +'ijjUi (k)+|kJ0(k—k1)7\O al
Ui(k,t) = e U (k,t) + ¢ o(k 21
( et) + adlk) 2y x{uy (k = Du () +uy (k = Du () + u (k = Hup (1)
and + Uk =Dur ()}
ui(k,t) = e Ti(k, 1), (22) == ikip~(k) = vk’ (k), (26)
With the decompositio20) substituted into E¢(18) we can where the functiori(k-ky) satisfies
obtain equations of motion for the mean and fluctuating ve- 1 for k=<ky,
locities in k space. However, we shall again concentrate on O(k—ky) = 0 for k> k,.

the case where the mean velocity is a constant and consider
the equation of motion for the fluctuating velocity, where weNote that we have inserted a bookkeeping paramegerl

haveU;(k,t)=K;d(k), and the transformatiof1) becomes

K; (k) = e ek, 8(K) + ¢; 5(K). (23)

Fourier transforming the fluctuating pressie,t) in the
same way as the velocity field, from E(.0), we have the
k-space equation for the velocity fluctuation as

before the nonlinear term and that we have also omitted
some time arguments in the interests of conciseness.

Now apply the Galilean transformation as given by Eq.
(17) for the fluctuating pressure, E(R?2) for the fluctuating
velocity, and Eq(23) for the constant translational velocity
K. It is immediately clear from a comparison with E38),
and the way it is shown to be Galilean invariant using Eq.
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(19), that Eq.(26) is similarly Galilean invariant. That is, the of both vertex and viscosity are in fact unconstrained by
time derivative generatesk-cu;(k ,t)et which cancels the ~Galilean invariance.
additive term in the Galilean transformation of the constant To sum up, as we pointed out after E42), theoretical
mean velocityK. The nonlinear terms generate phase factorgapers in turbulence begin with what is invariably referred to
e *“ which cancel right through the equation. as “the Navier-Stokes equation,” but in fact this claim is not
Next suppose that some operational procedure can be agtrictly true. Their starting point is really the equation for the
plied to the nonlinear terms involving the'(k,t) such that  fiyctuating velocity in the comoving frame of the constant
they can be replaced by renormalized viscous and verteyean velocity. As we saw from Eqé10) and (11), in the
terms acting on the explicit scales(k,t). In other words, |aporatory frame the Galilean invariance of the equation for
we assume the existence of a conditional proje€tgrsuch  the fluctuating field is shown by transforming the constant

that mean velocity only. Hence the fluctuating field itself is free
Pu(k, O} =u"(k,1), (27)  from constraint; and, as we showed symbolically in Egs.
. _ (25—(28), there is therefore no basis for constraining the
and with properties such that E@6) takes the form perturbation expansion of the fluctuating velocity equation.
P Indeed this conclusion could have been anticipated from
up (k,t) _ . . . SR
+ik;K;u; (k) + ik; 6k — k) A (k) elementary considerations. Vertex renormalization is to do

with the dynamics and cannot be affected by kinematical
shifts such as a Galilean transformation. Or, to put it another
de*"I ui (k= Duy(h) way, a velocity fluctuation is a velocitdifferenceand so
automatically Galilean invariant.
— il 2~
=~ ikip (k) = vk (k). (28) It is a pleasure to thank Arjun Berera, David Hochberg,
where \(k) and v(k) are renormalized vertex and viscous Khurom Kiyani, and Martin Oberlack for stimulating discus-
functions. In this picture, it is clear that the renormalizationssions.
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