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The Navier-Stokes equation is invariant under Galilean transformation of the instantaneous velocity field.
However, the total velocity transformation is effected by transformation of the mean velocity alone. For a
constant mean velocity, the equation of motion for the fluctuating velocity is automatically Galilean invariant
in the comoving frame, and vertex renormalization is not constrained by this symmetry.
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Galilean invariance is often invoked for macroscopic non-
linear field problems in order to restrict the nature of possible
solutionsf1–12g. Such approaches have been influenced by
the use of Lorentz invariance in quantum field theory. In-
deed, Galilean invariance has been used as the justification
of Ward identities, which in turn lead to the conclusion that
in the perturbative renormalization groupsRGd the vertex is
not renormalizedf1,9g. If correct, this conclusion is impor-
tant, as it is well known that the elementary perturbation
theory of the Navier-Stokessand similar equationsd generates
vertex corrections.

However, the application of field-theoretic approaches to
classical problems requires a certain amount of caution. It is
not correct to regard the Galilean transformation as merely
the low-speed form of the Lorentz transformation. In the
former case, the need additionally to transform the boundary
conditions may render the symmetry essentially trivial for
the dynamics of the systemf13g, while in some classical
systems the symmetry may be hiddenf14g, meaning that it is
satisfied automatically by the formalism and hence can im-
pose no constraint on the form of solutions. In this Brief
Report we shall argue that this is the case for stochastic
classical nonlinear systems where one considers fluctuations
about amean which itself satisfies the requirement of Gal-
ilean invariance.

As our main point is quite subtle, and our conclusion
likely to prove controversial, we will present our arguments
in a detailed, almost pedagogic fashion. Consider the Navier-
Stokes equationsNSEd in an inertial frameS:

]Vi

]t
+ Vj

]Vi

]xj
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]P

]xi
+ n0¹

2Vi , s1d

wheren0 is the kinematic viscosity of the fluid,Visx ,td and
Psx ,td are the instantaneous values of the velocity and pres-
sure, and the continuity equation takes the form]Vi /]xi =0,
for an incompressible fluid. For convenience we work in a
system of units where the fluid density is unity.

Also, as is well known, taking the divergence of each
term in s1d, and invoking incompressibility, leads to a
Poisson-type equation for the pressure, thus:

¹2P = −
]sViVjd
]xi]xj

. s2d

This result is used to establish the Galilean transformation of
the fluid pressure.

We wish to show that the NSE takes the same form in

another inertial frameS̃, provided all variables are replaced
by variables with tildes, which are the corresponding quan-

tities measured inS̃. This property is known as Galilean in-
variance. We begin by defining the Galilean transformation
and establishing the basic transformation laws.

Consider a second inertial frameS̃, with constant velocity
ci and situated atxi =cit in S at time t. Without loss of gen-

erality, we take the axes ofS̃ to be oriented along the axes of
S, and to have been coincident att=0. We also make the
usual assumption in Galilean relativity that time is universal
and hencet= t̃. Then the position coordinates of an event,
which are given byx andx̃ in the two coordinate frames, are
related by simple vector addition, as are the velocities, thus:

x = ct + x̃, Vi = ci + Ṽi . s3d

It is easily shown that the relevant differential coefficients
transform as

]Ṽi

]xj
=

]Ṽi

]x̃j

,
]Ṽi

]t
=

]Ṽi

]t̃
− cj

]Ṽi

]x̃j

, s4d

and these results apply to all functions ofx and t.
We can now transform the NSE, as given by Eq.s1d in

frame S, into frameS̃. From Eqs.s2d–s4d it follows that P

=P̃. With the substitution of this result along with Eqs.s3d
and s4d, the NSE inS becomes

s5d

Canceling the two terms joined by the underbrace, we have

Eq. s5d as the NSE inS̃. This establishes the Galilean invari-
ance of the Navier-Stokes equation, as required. It should be
noted that the invariance of the continuity relation follows
quite trivially, from Eqs.s3d and s4d.

In order to study fluctuating flows, we make the usual
Reynolds decomposition which divides the instantaneous ve-*Electronic address: w.d.mccomb@ed.ac.uk
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locity into a mean velocity and a fluctuation about that mean.
We setVi =Ui +ui, whereUi =kVil is the mean velocity andui

is the fluctuation about the mean. By definition,kuil=0,
where the angle bracketsk¯l denote an ensemble average.
Similarly, we may introduce an analogous decomposition for
the pressure,P=P+p, whereP is the mean pressure and the
fluctuating pressurep satisfieskpl=0.

We note that these are instantaneous velocities at a spe-
cific pointP in space-time. Hence, in terms of the two sets of
coordinates of that point, we have

Visx,td = ci + Ṽisx̃, t̃d. s6d

sRecall that time is universal and so strictlyt̃= t. But we shall
leave it ast̃ for consistency at this stage.d Applying the Rey-
nolds decomposition to this form gives

Uisx,td + uisx,td = ci + Ũisx̃, t̃d + ũisx̃, t̃d, s7d

and taking averages, usingkuil=kũil=0 andkcl=c, yields the
transformation of the mean velocity as

Uisx,td = ci + Ũisx̃, t̃d. s8d

Then, subtracting this result from Eq.s7d, we obtain

uisx,td = ũisx̃, t̃d, s9d

which is the Galilean transformation of the fluctuating veloc-
ity.

We should note that the equations of motion for the mean
velocity sthe Reynolds equationd and the fluctuating velocity
can be obtained by substituting the left hand side of Eq.s7d
into Eq. s1d in place of Vi, and following the procedures
leading to Eqs.s8d ands9d, as just outlined. In this way it can
be shown that the Reynolds equation is Galilean invariant
and that theGalilean invariance of the equation for the fluc-
tuating velocity may be established by transforming the
mean velocity only.

If Uj is constant in space and time, the turbulence is spa-
tially homogeneous. To emphasize that the mean velocity is
now constantsin both space and timed, we rename it asUj
=Kj. Then it is easily shown that every term of the Reynolds
equation vanishes and that the equation for the fluctuating
velocity takes the form

]ui

]t
+ Kj

]ui

]xj
+

]suiujd
]xj

= −
]p

]xi
+ n0¹

2ui . s10d

We note that this equation is Galilean invariant under

Ki = ci + K̃i,
]ũi

]t
=

]ũi
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− cj
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, ui = ũi , s11d

as the two terms
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+ K̃j
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+ cj
]ũi

]x̃j

transform invariantly due to the usual cancellation.
We further note that this also holds forKi =0, in which

case the fluctuating velocities are measured in the comoving
frame of the constant mean velocity. Thus, the equation for

the fluctuating velocity in the comoving frame, viz.,

]ui

]t
+

]suiujd
]xj

= −
]p

]xi
+ n0¹

2ui , s12d

is automatically Galilean invariant, for the special case
where the mean velocity is a constant. That is, no actual test
of Eq. s12d has to be made in order to establish its Galilean
invariance. Nor is such a test possible without “accelerating”
the field out of its comoving frame. This equation is the
normal starting point for theoretical approaches and its Gal-
ilean invariance is erroneously taken as being identical to
that of Eq.s1d. Although the two equations are of identical
form it must be borne in mind that Eq.s1d involves the
instantaneous velocity whereas Eq.s12d involves the fluctua-
tion from the mean.

In order to see the significance of this result for the RG,
we introduce the Fourier transformationfsk ,td, for some ar-
bitrary function fsx ,td. In order to establish the Galilean
transformations for the Fourier transform, it is convenient to

write the defining equation inS̃. Thus,

f̃sk̃, t̃d =
1

s2pd3 E e−i k̃·x̃ f̃sx̃, t̃dd3x̃. s13d

From this, and from Eq.s4d for the transformation of the
differential coefficients, we have the transformation of wave

number ask = k̃, so we will just usek for wave number in
both frames.

Now we putk̃ =k, t̃= t, andd3x̃=d3x sthe latter two, trivi-
allyd and substitute from Eq.s3d for x̃ into Eq.s13d, to obtain

f̃sk,td =
1

s2pd3eik·ctE e−ik·x f̃sx̃,tdd3x. s14d

This is the required result. In order to find the transformation
rules for anyfsk ,td, we simply substitute on the right-hand

side for its real-space form inS̃.
Taking the velocity as an example, and substituting for

Ṽisx̃ ,td from Eq. s6d, we have

Ṽisk,td = eik·ct 1

s2pd3 E e−ik·xhVisx,td − cijd3x

= eik·cthVisk,td − cidskdj, s15d

and rearranging gives the reverse transformation as

Visk,td = e−ik·ctṼisk,td + cidskd. s16d

Similarly, the direct and reverse transformations for the Fou-
rier transform of the pressure take the form

P̃sk,td = eik·ctPsk,td, Psk,td = e−ik·ctP̃sk,td. s17d

Now, Fourier transforming Eq.s1d, the NSE takes the
form in k space
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]Visk,td
]t

+ ikj E d3l Visk − l,tdVjsl,td

= − ikiPsk,td − n0k
2Visk,td. s18d

Substituting from Eqs.s16d ands17d, we may write the left-
hand sidesLHSd of Eq. s18d as

s19d

Let us look at the terms labeledA, B, andC in turn. Clearly
B and C vanish because of, respectively, incompressibility
and thed function at the origin. TermA cancels the first term
on the right-hand side of Eq.s19d, while the right-hand side
of Eq. s18d may be transformed using Eqs.s16d and s17d so
the Galilean transform of Eq.s18d takes the same form in
variables with tildes.

Now we extend the Reynolds decomposition to wave
number space by writing

Visk,td = Uisk,td + uisk,td, s20d

whereUisk ,td=kVisk ,tdl and kuisk ,tdl=0.
It follows at once from the Galilean transformations of

Eqs.s8d ands10d, and from Eq.s16d, that the transformations
for the mean and fluctuating velocities ink space are

Uisk,td = e−ik·ctŨisk,td + cidskd s21d

and

uisk,td = e−ik·ctũisk,td. s22d

With the decompositions20d substituted into Eq.s18d we can
obtain equations of motion for the mean and fluctuating ve-
locities in k space. However, we shall again concentrate on
the case where the mean velocity is a constant and consider
the equation of motion for the fluctuating velocity, where we
haveUisk ,td=Kidskd, and the transformations21d becomes

Kidskd = e−ik·ctK̃idskd + cidskd. s23d

Fourier transforming the fluctuating pressurepsx ,td in the
same way as the velocity field, from Eq.s10d, we have the
k-space equation for the velocity fluctuation as

]uisk,td
]t

+ ikjKjuisk,td + ikj E d3l uisk − l,tdujsl,td

= − ikipsk,td − n0k
2uisk,td. s24d

Galilean transformation of the right-hand side of Eq.s24d
using Eqs.s17d and s22d is trivial so we concentrate on the
left-hand side, where we also invoke Eq.s23d, thus:

sLHSd =
]

]t
fe−ik·ctũisk,tdg + ikjfK̃j + cjge−ik·ctũisk,td

+ ikj E d3l e−isk−ld·ctũisk − l,tde−i l·tũjsl,td.

Differentiating the first square bracket generates
−ik ·cũisk ,tde−ik·ct which cancels with the term
ikjcjũisk ,tde−ik·ct in the second square bracket. The exponen-
tials in the last term reduce to the common factore−ik·ct

which cancels the exponential factor on the right-hand side
of Eq. s24d. Hence the demonstration of Galilean invariance
of the equation for the fluctuating velocityuisk ,td relies, just
as inx space, on the presence of the constant mean velocity
Ki which is also transformed.

Now let us consider the effect on the RG of working in
the laboratory frame rather than the usual comoving frame.
For the RG, we are interested in the effect of filtering the
equation of motion. Let us consider the Fourier modesusk ,td
to be defined on the interval 0økøk0. Then we define the
filter as follows:

u−sk,td = usk,td, 0 ø k ø k1;

u+sk,td = usk,td, k1 ø k ø k0. s25d

Herek1 is the lower limit of the first wave number band for
the RG.

Returning to thek-space equation of motion in the labo-
ratory frame, as given by Eq.s24d, we low-pass filter this and
substitute the decompositions25d into the nonlinear term
swith an analogous decomposition for the pressured to obtain

]ui
−sk,td
]t

+ ikjKjui
−skd + ikjusk − k1dl0E d3l

3hui
−sk − lduj

−sld + ui
−sk − lduj

+sld + ui
+sk − lduj

−sld

+ ui
+sk − lduj

+sldj

= − ikip
−skd − n0k

2ui
−skd, s26d

where the functionusk−k1d satisfies

usk − k1d = H1 for k ø k1,

0 for k . k1.
J

Note that we have inserted a bookkeeping parameterl0=1
before the nonlinear term and that we have also omitted
some time arguments in the interests of conciseness.

Now apply the Galilean transformation as given by Eq.
s17d for the fluctuating pressure, Eq.s22d for the fluctuating
velocity, and Eq.s23d for the constant translational velocity
K . It is immediately clear from a comparison with Eq.s18d,
and the way it is shown to be Galilean invariant using Eq.
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s19d, that Eq.s26d is similarly Galilean invariant. That is, the
time derivative generates −ik ·cuisk ,tdeik·ct which cancels the
additive term in the Galilean transformation of the constant
mean velocityK . The nonlinear terms generate phase factors
e−ik·ct which cancel right through the equation.

Next suppose that some operational procedure can be ap-
plied to the nonlinear terms involving theu+sk ,td such that
they can be replaced by renormalized viscous and vertex
terms acting on the explicit scalesu−sk ,td. In other words,
we assume the existence of a conditional projectorPc, such
that

Pchu−sk,tdj = u−sk,td, s27d

and with properties such that Eq.s26d takes the form

]ui
−sk,td
]t

+ ikjKjui
−sk,td + ikjusk − k1dlskd

3E d3l ui
−sk − lduj

−sld

= − ikip
−skd − nskdk2ui

−skd, s28d

where lskd and nskd are renormalized vertex and viscous
functions. In this picture, it is clear that the renormalizations

of both vertex and viscosity are in fact unconstrained by
Galilean invariance.

To sum up, as we pointed out after Eq.s12d, theoretical
papers in turbulence begin with what is invariably referred to
as “the Navier-Stokes equation,” but in fact this claim is not
strictly true. Their starting point is really the equation for the
fluctuating velocity in the comoving frame of the constant
mean velocity. As we saw from Eqs.s10d and s11d, in the
laboratory frame the Galilean invariance of the equation for
the fluctuating field is shown by transforming the constant
mean velocity only. Hence the fluctuating field itself is free
from constraint; and, as we showed symbolically in Eqs.
s25d–s28d, there is therefore no basis for constraining the
perturbation expansion of the fluctuating velocity equation.

Indeed this conclusion could have been anticipated from
elementary considerations. Vertex renormalization is to do
with the dynamics and cannot be affected by kinematical
shifts such as a Galilean transformation. Or, to put it another
way, a velocity fluctuation is a velocitydifferenceand so
automatically Galilean invariant.
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